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Nearly Planar Nonsolvated Monomeric Silyl- and Germyllithiums as a Result
of an Intramolecular CH —Li Agostic Interaction
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The intra/intermolecular interaction of €4 o-bonds with
transition metals is referred to as an agostic interaction, which is
one of the important forces controlling reactivity and structure in
transition metal chemistryIn contrast, such an interaction in alkali
metal derivatives is not common, owing to complex formation
between coordinating solvents such as THF eOEind the alkali
metal cation€. The CH-Li agostic interaction can be often found
in nonsolvated oligomeric lithium derivatives (RLA3 Here we

report the synthesis and unusual structural features of nonsolvated

monomeric silyl- and germyllithiums with a nearly planar geometry,
arising from the intramolecular agostic €t interactions of these
silyl- and germyllithiums.

We found that the reaction of tris[dert-butyl(methyl)silyl]silyl
radicalla* with lithium in hexane at room temperature results in a
reduction of the radicalato form tris[ditert-butyl(methyl)silyl]-
silyllithium 2a (Scheme 15. The silyllithium 2a was isolated as
extremely air- and moisture-sensitive pale-yellow crystals in 62%
yield.8 The tris[ditert-butyl(methyl)silyl]germyl radicallb* also
readily reacted with lithium in hexane to produce trisfelit-butyl-
(methyl)silyljgermyllithium @b, 88%)7:8
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The molecular structures &fa and 2b, determined by X-ray
crystallography, are shown in Figures 1 and 2, respecti/&lye
remarkable features &fa are as follows: (a) the central anionic
silicon atom is almost planar (av 119f0r Si—Si—Si bond angles);

(b) a nonsolvated monomeric structure is adopted; (c) theSBi
bond lengths are significantly shortened [av 2.3632(8) A] relative
to those of the neutral speciéBi;MeSi)SiH [av 2.450(2) A] and
(‘BBuMeSi)Si- [av 2.4210(7) A} because of hyperconjugation of
the anionic center with adjacent-orbitals of Si—C bonds; (d)
intramolecular CH-Li agostic interactions are observed (see also
Figure 3); and (e) the SiLi bond length [2.531(6) A] is somewhat
shorter than the typical value of solvated and pyramidal silyllithium
compounds (2.672.70 A)10

Normally, alkali metal compounds of the group 14 elements
prefer a tetrahedral geometry rather than a planar georh¥tig.
contrast to a number of planar carbanions in the liter&toethe
best of our knowledge, no planar alkali metal derivatives of heavier
group 14 elements have yet been repotetihe introduction of
large and electropositive substituents such as silyl groups on the
central atom can lead to a planar geometry due to the decrease o
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Figure 1. ORTEP drawing of tris[dtert-butyl(methyl)silyl]silyllithium 2a.
Hydrogen atoms are omitted for clarity. Selected bond lengths (A): Si-
(2)—Li(1) 2.531(6), Si(1)-Si(2) 2.3608(8), Si(1)Si(3) 2.3629(8), Si(Ly
Si(4) 2.3660(8), Li(1)-C(3) 2.595(6), Li(1)-C(12) 2.518(5), Li(1}C(21)
2.574(5). Selected bond angles (deg): SH8K1)—Si(3) 119.96(3), Si-
(2)—Si(1)—Si(4) 119.31(3), Si(3)Si(1)—Si(4) 119.89(3).

inversion barrierd! as found in the case of (M8i);CK!? and the
isoelectronicitPrsSi)sP;12 however, the structure of [(M8i)sSiM],
(M = alkali metal) was found to have a significantly pyramidalized
geometryt4
The unusual structure @ais ascribed to severe steric repulsion
by the three bulkyBu,MeSi groups, which can force the molecule
into a monomeric and planar structure. All of the methyl substituents
at the Si atoms are arranged in a “gear”-type fashion to minimize
steric hindrances. Of further interest is the fact ti2at has
intramolecular Li--CHjz interactions, as determined by-+CH;
distances [Li(1)}-C(3), 2.595(6); Li(1)-C(12), 2.518(5); Li(1y
C(21), 2.574(5) A]. Thus, the planarity of the central silicon atom
is a consequence of the combination of both the intramolecular
CH-Li agostic interaction and the steric factor (Figure 3). Indeed,
the crystal structure of free silyl anioriB(,MeSi);Si~][Li T(THF),]
3a, which was prepared by the reactionlafwith lithium in THF,
no longer showed planar geometry, because of the absence of the
intramolecular CH-Li agostic interactiort®
Tris[di-tert-butyl(methyl)silylJgermyllithium @b) has structural
features similar to those dfa (Figure 2), that is, a nonsolvated,
monomeric, and nearly planar structure with €H interactions
[Li(1) —C(3), 2.588(9); Li(1}C(12), 2.597(8); Li(1}C(21), 3.511-
EQ) A; av 117.3 for Si—Ge—Si bond angles). As witt8a, the
geometry of the free anion'Bu,MeSixGe ][Li *(THF),] (n = 3,
4) (3b) changed to a pyramidal structuife.
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Figure 2. ORTEP drawing of tris[dtert-butyl(methyl)silyllgermyllithium
2b. Hydrogen atoms are omitted for clarity. Selected bond lengths (A):
Ge(1)-Li(1) 2.518(7), Ge(1)ySi(1) 2.4500(11), Ge(H)Si(2) 2.4357(10),
Ge(1)-Si(3) 2.4140(10), Li(1)C(3) 2.588(9), Li(1)-C(12) 2.597(8), Li-
(1)—C(21) 3.511(9). Selected bond angles (deg): Si@¢(1)-Si(2)
116.00(3), Si(1)yGe(1)y-Si(3) 116.96(3), Si(2yGe(1)-Si(3) 119.40(3).

Figure 3. Space-filling representation @ Hydrogen atoms are omitted
for clarity. Gray, carbon; yellow, lithium; red, silicon.

The CH-Li agostic interaction found iRais very weak. Indeed,
theH NMR spectrum oRain toluenees shows a very sharp signal
for both tert-butyl groups at 1.30 ppm and the methyl group at
0.43 ppm. As the temperature was lowered, #HeNMR signals
of thetert-butyl groups broadened{= 240 K) and split into two

exceptionally high St+Si single bond rotational barrier might be
caused by the intramolecular CHLi agostic interaction in2a
However, in a polar solvent such as THE-we did not observe
such phenomena, because of the lack of the—CHagostic
interaction.
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